

Thot Data

Data management and analysis software.

Contents:

	Get Started

	Overview

	Concepts of Thot

	Examples

	Thot Utilities

Overview

Thot is a software program used to manage and analyze data. The core software is available as a Python package at PyPI (pypi.org/project/thot-data [https://pypi.org/project/thot-data/]) with open source code on GitHub (github.com/bicarlsen/thot-data [https://github.com/bicarlsen/thot-data/]) and documentation hosted on Read The Docs (thot-data-docs.readthedocs.io [https://thot-data-docs.readthedocs.io/en/latest/]). There is also a hosted service (thot-data.com [http://thot-data.com/]) available that acts as a user interface for the core program. The hosted service uses the Software as a Service (SaaS) architecture to ease the use of the core service and provide additional functionality.

Thot’s core principle is

Data and analysis should be modular and independent.

Thinking About Thot

To achieve this core principle Thot uses top-down organization and bottom-up analysis, visualized in Fig. 30. Another way to think about this is outside-in organization and inside-out analysis. This is implemented in a tree structure where each node has access to all the resources below it, and properties are inherited from above.

[image: Top-down organization, bottom-up analysis.]

[image: Outside-in organization, inside-out analysis.]

Fig. 30 Organization and analysis structure of a Thot project. Two ways of visualizing the structure, both are valid. (first) Top-down organization, bottom-up analysis. (second) Outside-in organization, inside-out analysis.

There are three types of Resources that make up a Thot project: Containers , Assets , and Scripts . Containers are the organizational units of Thot. Containers can contain other Containers and Assets. Assets represent data in Thot. An Asset can be any type of file or resource which is consumed or produced by a Script. A Script represents an analysis procedure. Scripts are associated with Containers, allowing them to be reused. When a Script is being run on a Continer it ahs access to all the Assets in that Container’s sub-tree and produces Assets in the Container it is being run on.

Containers

Containers are the organizational building blocks of your project. They allow you to structure your projects and analysis in a logical way. Following the top-down organizational approach, Containers can contain both other Containers as children, and Assets. They can also have descriptors and metadata attached to them. Child containers inherit all the properties of their parents. Containers are also associated with Scripts, which analyze its Assets and produce new Assets.

[image: Container model.]

Fig. 31 Containers can contain other Containers and Assets, and have Scripts associated with them.

Assets

An Asset is anything that is consumed or created in your analysis. This includes raw data, calculated data, images, or any other resource. Each Asset can have its own descriptors and metadata attached to it.

Scripts

A Script is a multi-input, multi-output function whose inputs and outputs are Assets. The input to a script is consumed and the output is produced. Produced Assets can then be consumed by other Scripts in the future.

[image: Script model.]

Fig. 32 Scripts consume and produce Assets.

Common Resource Properties

Each Resource has common properties, called Descriptors, that can be asigned to it, and can also have notes attached to it. In addition, Containers and Assets can have metadata assigned to them.

Descriptors

Descriptors are human-readable pieces of data that describe what they are attached to. These properties can be used to identify classes of Objects (through its type or tags), or individual objects (by its name).

	Name

	Type

	Tags

	Description

Notes

Notes allow you to kep track of any observations, reminders, or comments you may have. For Scripts, this may be a reminder of analaysis that still needs to be implemented or tested. For Containers and Assets a note allows you to comment directly on the resource your referencing.

Metadata

Metadata is data about data. This allows you to track the variations in your experiments, and easily utilize that information in your analysis. By using metadata to track your experimental parameters, you can directly compare experiments of the same type to analyze what effect changing an experiemntal parameter has on that measurement. Metadata is inherited by children from their ancestors, allowing you to easily group your experimental parameters.

Example

Imagine we are interested in doing a simple measurement of gravity. We drop balls of different weights from different heights. Assume we have light and heavy balls, and we will drop each from a short and tall height, measuring the time it takes to hit the ground.

Our data for each experiment is the time, but we must modify this data with information about the drop height and ball weight. This is where metadata comes in. By marking each piece of data with metadata we can track these experimental parameters without modifying our data. And, because metadata is inherited, we can group our experiments first by ball weight, then by drop height, making our analysis more intuitive.

[image: Example of metadata.]

Fig. 33 Metadata adds information realted to experimental parameters to experimental data. It is inherited from ancestors allowing an intuitive grouping of experiments.

Thot Projects: Organization and Analysis

Thot is based on the idea that data and analysis should be separated, as stated in the core principle. This is implemented by keeping the data and analysis structures independent. Thot also takes the opinion that data should never be directly modified. This is enforced by allowing Scripts to only create new Assets, but never delete or modify existing ones.

Below is an example of a Thot Project’s lifecycle to show how these ideas are refelected in Thot’s architecture.

	Organize using Containers

[image: _images/process-01-organize.png]
Thot uses a Container tree to organize projects. This allows you to group your data in intuitive ways, easing your analysis process.

	Add data using Assets

[image: _images/process-02-data.png]
Add experimental data to your project using Assets. This allows you to add descriptors, notes, and metadata to your data without modifying it.

	Associate Scripts for analysis

[image: _images/process-03-associate.png]
Tell Thot which Scripts to run on each Container by creating a Script Association.

	Run the analysis

[image: _images/process-04a-analyze.png]
[image: _images/process-04b-analyze.png]
[image: _images/process-04c-analyze.png]

Starting from the bottom level of the Container tree, Thot automatically runs the analysis. After all the Scripts at one level are complete Thot runs the Scripts on the level above. This process is repeated, moving up the tree until the top is reached. This allows Scripts at higher levels to consume those produced at the lower levels.

By keeping your Scripts separate from your data, you can reuse them on new projects. You can also retroactively add data to your projects, and without any modifciations, include it in your analysis just by re-analyzing the project.

Concepts of Thot

There are two types of project you can run with Thot: Local and Hosted. Local projects are run on your computer – no internet connection or registration required. Hosted projects are run from the Thot website [http://www.thot-data.com] and provide additional functionality. If you have a Hosted account, you can sync your Local Projects with it, so data is automatically uploaded to the Thot servers and analyzed.

Creating a Project

Local Projects

Local and Hosted projects really only differ in how they store your data. Local projects use your file directory as a database, while the Hosted version uses the Thot server.

Local projects are just a set of folders and files on you computer. To tell Thot what a folder or file is you use an Object File. Object Files are just JSON files that provide information to your project. There are three types of Object Files – one for each component of a Thot project.

Warning

A folder can be either a Container or an Asset, not both.

Note

You can use root: to refer to the root Container of the project. This allows the use of absolute paths within the project. Instead of writing ../../../path/to/file.csv you could write root:/path/to/file.csv.

_container.json

By adding a _container.json file to a folder you mark it as a Container. A Container file has the following properties:

	name: The name of the Container. Can be used for retrieval in a script. If this is not provided, the base name of the folder is used.

	type: Represents the class of the container. This is most useful to designate what level of the organizational structure the Container is at.

	description: A description of the Container.

	tags: A list of tags used for retrieving the container in a script.

	metadata: A set of key-value pairs representing metadata about the Container and its children.

{
 "name": "",
 "type": "",
 "description": "",
 "tags": [],
 "metadata": {}
}

_asset.json

By adding an _asset.json file to a folder you mark it as an Asset. In addition to the basic properties of the Container, an Asset also has:

	file: Absolute or relative path to the Asset file. It is best to put the file in the Asset folder, so a relative path is most convenient.

	creator: The creator of the Asset. If the Asset was created by a specific machine, this is a good place to mark that. If the Asset was produced by a script, this will be set to the path of the script, allowing you to trace back its origin.

	creator_type: This indicates whether the Asset was created by a user or a script. If a script produced it, this will automatically be set.

{
 "name": "",
 "type": "",
 "description": "",
 "tags": [],
 "metadata": {},

 "file": "path/to/asset.csv",
 "creator": "",
 "creator_type": "user"
}

_scripts.json

Scripts files are a bit different than those for Containers and Assets. These files create an association between a script and a Container. This file tells Thot which scripts to run, and in which order.

Warning

Only Containers can contain a _scripts.json file.

A Scripts file contains a list of Script Associations:

	script: Relative or absolute path to the script.

	priority: The order in which to run the script. Lower priorities go first.

	autorun: Whether to automatically run the scrpt when evaluating a project. If false you will have to manually run the script.

[
 {
 "script": "path/to/script.py",
 "priority": 0,
 "autorun": true
 }
]

Notes

A _notes folder can also be included in a Container or Asset. Text files containing notes about the object can be stored in this folder. Each notes has the properties

	created: The date of creation interpreted form the time the note was last modified.

	title: The title of the note, interpreted from the name of the file.

	content: The note itself, read from the contents of the file.

Utilities

Thot comes with a utilities module to make building local projects an easier task. For full documentation use python -m thot.utilities -h. All utility functions output the ids of modified of Containers.

Options

Utilities functions include some generic options that can be applied to all functions.

	--root, -r: Specifies path to the root Container.

	--overwrite, -w: If a conflict emergers, overwrite the original content with the provided content. Otherwise, leave the original content.

	--search, -s: JSON object used to match Containers to apply the function to.

Warning

Ensure that your JSON is properly quoted. You will likely have to place single quotes around the JSON string, and double quotes around property keys and strings within the object. E.g. '{ "string_property": "test string", "boolean_property": true, "number_property": 42 }'

Note

On Windows you must be careful with two things.

First, you can not have spaces within quoted text. This results in an unrecognized arguments error. And second, Windows does not interpret single quotes (') in the command line, so only double quotes (") can be used. Thus, to enclose strings double quotes must be used, and any double quotes inside the strings must be escaped with a backslash (\).

Thus, the example command above on a Windows machine should be written as "{\"string_property\":\"test string\",\"boolean_property\":true,\"number_property\":42}"

Scripts

You can autotmatically add scripts to a project using the add_scripts function.

python -m thot.utilities add_scripts --scripts <scripts_object>

Where <scripts_object> mimics the _scripts.json file. For convenience, if only one script is being added it does not need to be enclosed in an array.

Scripts can also be automatically removed with the remove_scripts function.

python -m thot.utilities remove_scripts --scripts [script_1, script_2, ...]

For convenience, if only a single script is being removed it does not need to be in an array. If a script does not exist on a selected Container it is not modified. Scripts are matched based on the "script" field.

Finally, you can set the scripts automatically using the set_scripts function.

python -m thot.utilities set_scripts --scripts <scripts_object>

JSON

JSON is a file format that allows data to be stored in a human-readable form. You can find a nice introduction at W3Schools [https://www.w3schools.com/js/js_json_syntax.asp], and full documentation at json.org [https://www.json.org/json-en.html].

Hosted Projects

To create a Hosted project go to thot-data.com [http://www.thot-data.com] and create an account [http://www.thot-data.com/register] or log in [http://www.thot-data.com/login].

Hosted projects have additional features such as user friendly interfaces for project creation, sharing projects and scripts, and more.

A Hosted Project uses the Thot servers as its database. Anytime a change is made to a project, the relevant analysis are automatically run, unless the scripts are set to run manually.

Writing Scripts

Thot is founded on the idea that the same analysis needs to be run on different data sets. Often this is done manually, taking additional time and effort, and is prone to mistakes. By separating the analysis process from the data, Thot allows your data to be automatically analyzed.

Thot Projects

Because Thot separates the analysis from the data, you need a way to pull your data in to the script in a Container relative manner. This is done using a Thot Project.

Because analysis is bottom-up, a script only has access to Containers and Assets below it.

Thot Interface

Each Thot Project implements a standard interface. This makes converting between Local and Hosted projects easy. A Thot Interface consists of the following structure.

Properties

	root: Current Container being analyzed.

Methods

	find_container(search = {}): Returns a Container matching the search criteria.

	find_containers(search = {}): Returns a list of Containers matching the search criteria.

	find_asset(search = {}): Returns an Asset matching the search criteria.

	find_assets(search = {}): Returns a list of Assets matching the search criteria.

	add_asset(asset [, id = None, overwrite = True]): Creates a new asset in the currently active Container. Returns the id of the new Asset. For a Local project the id is the absolute path to the Asset.

Local Project

A Local Project is a Thot Interface that uses your local file system as its database. During the analysis everything is performed relative to the active Container.

A simple python script for a local project may look something like

import pandas as pd
from thot import ThotProject

db = ThotProject() # set up local project

retrieve data
sample = db.find_container({ 'type': 'sample' })
data = db.find_asset({ 'type': 'times' })

analyze data
df = pd.read_csv(data.file)
stats = df.mean()

produce new Asset for future consumption
stats_props = {
 'file': 'stats.csv',
 'type': 'stats',
 'name': '{} Stats'.format(sample.name)
}

asset_path = db.add_asset(stats_props, 'stats', overwrite = True)
stats.to_csv(asset_path)

Testing Scripts

You can test your scripts using the dev_root argument when initializing a ThotProject.

db = ThotProject(dev_root = 'path/to/test/container')

This allows you to run your scripts in a Python interpreter without analyzing the entire project tree.

The ThotProject``s also have a ``dev_mode() method that returns True if the script is being run manually (e.g. from the console or within a Jupyter Notebook), and False if it’s being run by the Runner.

Runner

Once your project is set up you use the Runner to evaluate it.

thot run [--root <path/to/tree>] [--scripts [<script_1>, <script_2>, ...]]

	--root: Specifies the root container whose tree should be run. This doesn’t need to be the root of the project. If not included the current directory is used as the root.

	--scripts: A JSON array specifying which scripts to run. If not included all scripts are run.

Examples

Caution

IN PROGRESS…

Consider a new drug we are testing. The main hypothesis of our investigation is at what dose the drug should be taken. We will try two different doses, as well as have a control group whose dose is 0. We know from other studies that the sort of drug we are testing affects men and women differently, so we will split our participants by their gender. In each of these groups we will have three participlants. Each participant will come in every ten days, starting from their first dose, to have their blood pressure and heart rate monitored for thirty days. Thus our tree will have six levels:

	Project

	Dose

	Gender

	Participant

	Day

	Experiment

This leads us to the structure tree seen in Fig. 34. In this example there would be \(3 \,[doses]* 2 \,[\frac{genders}{dose}]* 3 \,[\frac{participants}{gender}] * 4 \,[\frac{days}{participant}]* 2 \,[\frac{experiments}{day}] = 144 \,[experiments]\). Even for this quite limited study managing and anlyzing this data would be difficult. Using Thot though, we can simplify the process significantly.

[image: Example tree structure]

Fig. 34 Example project organization

Thot Utilities

Caution

IN PROGRESS…

Thot Utilities is a command line tool built to automate the common or tedious tasks you may have to perform when managing your local projects.

Containers

Add Containers

Remove Containers

Note

Removing Containers doesn’t delete anything, it just renames the _container.json file so Thot does not recognize it as a Container anymore.

Warning

Removing a Container removes the entrie subtree below it.

Assets

Add Assets

Remove Assets

Note

Removing Assets doesn’t delete anything, it just renames the _asset.json file so Thot does not recognize it as an Asset anymore.

Converting Data Files to Assets

Convert can be a bit complicated because you can use functions to assign properties

The basic command is

Listing 36 data_to_assets

thot utils data_to_assets --search <glob> --assets <asset_dictionary> --kwargs { "_id": <id>, "rename": <rename> }

<glob> is a glob pattern [https://en.wikipedia.org/wiki/Glob_(programming)] to match the data.

<asset_dictionary> is either a function that returns a dictionary representing the Asset, or a dictionary representing the Asset where the values can either be static or a lambda function that returns the value for the given field. Functions are passed the full path of the asset file.

<id> and <rename> can be either a string or a lambda function. If <rename> is a function it is passed the absolute path of the original data file. If <id> is a function it is passed the same.

Functions are passed the absolute path of the Asset file (i.e. after the original file has been moved to the Asset folder and renamed).

The _id field sets the id of the Asset, i.e. the relative path.

The rename field will rename the data file once moved to the Asset folder.

You also have to make sure that everything is properly quoted i.e. You can use different types of quotes inside of eachother, or need to escape the same type of quote with a backslash (\).

Most basic use

thot utils data_to_assets

Scritps

Add Scripts

Remove Scripts

Set Scripts

Index

 _images/container_properties_dialog.png
Container Properties

Name

v Rename folder
Type

Description

Tags
Metadata

Add Metadata
Name Type Value

cancel I submit

_images/drug-trial-tree.png
Project

Dose

Gender

Participant

Day

Experiment

Control
(0 mg)

Day 10

Day 20

_images/bulk_edit_menu.png
Thot Desktop | /home/brian/Downloads/thot-test/data

Edit Help

Project

Type

File Tree

silent Fireworks
project

Qllzlle

Analyze

Batch 1
batch

Qllzlle

Batch2
batch

Qllzlle

_images/container-model.png

_images/file_tree_view.png
Thot Desktop | /home;/bric/Downloads/fireworks/data

Project | File Tree

NS Containers Container
- _container;son
Name Silent Fireworks
Add child v Rename folder
s Type project

Description | Determining whether recipe A or B is quieter.

Add Asset
Scripts.

Set scripts.
Add Scripts

Tags

Metadata
Add Metadata
Name Type Value

save

_images/fireworks-tree.png
Recipe A Recipe B

Batch 1 ‘ ‘ Bach2 | | Baent | ‘ Batch 2

_images/duplicate_tree.png
Thot Desktop | /home/brian/Downloads/Fireworks/data
Edit Help

Project | File Tree

“None- - Analyze 2=
Silent Fireworks
Qllzlle
)
Recipe A Edit Properties
Edit Scripts
Duplicate Tree
Exclude Tree
ollzle Open Folder
‘ |
Batch 1 Batch2
Qllzlle

_images/file_tree_add_child.png
Thot Desktop | /home;/bric/Downloads/fireworks/data

Project | File Tree

Name Containers Container
= Recipe A
» [Batch_1 Name Recipe A
_containerjson Add child v Rename folder
_containerjson =
Assets. Type recipe
Description
Add Asset
Scripts.
Set Scripts
‘Add Scripts
Tags
‘Metadata
Add Metadata
Name Type Value

recpe = e |

save

_images/init_container.png
Initialize Thot Container

/home/bric/Downloads/fireworks/data is not a Thot Container.

Do you want to make it one?

_images/metadata_example.png
Container Properties

Name Batch 1
v Rename folder
Type batch
Description
Tags
Metadata
Add Metadata
Name Type Value
batch number ~ | |1
(cancel J(submit

_images/noise_stats_analysis.png
Thot Desktop | /home;/bric/Downloads/fireworks/data

Project | File Tree

Assets -

silent Fireworks

(none)

Q| 7 |e

Analyze

Recipe B

(none)

Q| 7 |e

Batch2 Batch 1 Batch2

Noise Statistics
Noise Data

Noise Statistics
Noise Data

Noise Statistics
Noise Data

|7 e |7 e |7 e

Batch 1

Noise Statistics
Noise Data

Q|7]e

Q

_images/process-01-organize.png

_images/process-02-data.png

_images/organization-analysis-model-nested.png
SISA|euy
1no-apisu|

uonyeziuebip
ul-apIsino

_images/organization-analysis-model.png
SISA|euy
—
dn-wonog

uoneziuebhuQ
_
umop-dol

_images/process-04b-analyze.png

_images/process-04c-analyze.png

_images/process-03-associate.png

_images/process-04a-analyze.png

_images/project_view.png
Thot Desktop | /home;/bric/Downloads/fireworks/data

Project | File Tree

Q

-None- - Analyze

silent Fireworks

_images/project_view_assets_preview.png
Thot Desktop | /home;/bric/Downloads/fireworks/data

Project | File Tree

Q

Assets - Analyze

silent Fireworks

(none)

Q|72 e

Recipe A

(none)

Q|7 e

Batch2 Batch 1

Noise Data Noise Data

ollzs® ollzs®

_images/project_view_complete_structure.png
Thot Desktop | /home;/bric/Downloads/fireworks/data

Project | File Tree

Q

-None- - Analyze

silent Fireworks

Q|72 e

_images/project_view_recipe_a.png
Thot Desktop | /home;/bric/Downloads/fireworks/data

Project | File Tree

-None- - Analyze e
silent Fireworks
° 7’ °©
Recipe A
° 7’ °©
Batch2 Batch 1

_images/root_selection.png

_images/asset_properties_dialog.png
Asset Properties

Name

v Rename folder
Type

Description

Tags
Metadata
Add Metadata
Name Type Value
File Select

Move asset file

PathType Root -

cancel I submit

_images/assets_complete.png
Thot Desktop | /home;/bric/Downloads/fireworks/data

Project | File Tree

Q

Assets - Analyze

silent Fireworks

(none)

Q|72 e

Batch2 Batch 1 Batch2 Batch 1

Noise Data Noise Data Noise Data Noise Data

ollzs® O|7e ollzs® ollzs®

_images/analyze-quick_start.png
Thot Desktop | /home/brian/Downloads/Fireworks/data

Edit Help

Project | File Tree

Q
A

Assets - Analyze

Silent Fireworks
(none)

Batch 1 Batch2 Batch 1 Batch2

Noise Data Noise Data Noise Data Noise Data

Qllzlle Qllzlle Qllzlle ollzs e

_images/bulk_edit_menu-quick_start.png
Thot Desktop | /home/brian/Downloads/Fireworks/data -}
Edit Help

Project | File Tree

Q

Assets - Analyze

Properties

Silent Fireworks
(none)

Qllzlle

Batch 1 Batch2 Batch 1 Batch2

Noise Data Noise Data Noise Data Noise Data

Qllzlle Qllzlle Qllzlle ollzs e

